

Department

KNOWLEDGE & VOCABULARY

ORGANISER

Longitudinal Waves

In longitudinal waves,

travel. Examples are:

Ultrasound Waves.

the vibrations are

direction of wave

Sound Waves.

parallel to the

Definition Kevword Angle of

Incidence

Angle of

reflection

Scattering

Dispersion

Frequency

Amplitude

Wavelength

Pitch

Incident

Law of

reflection

Spectrum

Echo

Diffuse

Angle between the normal and incident ray.

Science

The angle between the reflected ray and the normal. When light is reflected off a surface in all

directions. Spreading out of the different wavelengths of light, caused

by refraction of light as it passes through a prism.

The number of waves produced each second. The unit of frequency is hertz (Hz) The maximum height of a wave from the middle of the

wave to its peak or trough. The length of a single wave, measured from one wave peak to the next.

The frequency of a sound. Sounds with a high pitch have Light ray moving towards a surface or boundary.

Ray

a high frequency.

Light ray leaving a surface or boundary. Reflected

equals the angle of reflection.

Rav In reflection at a surface, the angle of incidence

> A series of similar waves arranged in order of wavelength or frequency

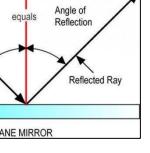
A sound caused by the reflection of a sound wave from a smooth surface back to the listener.

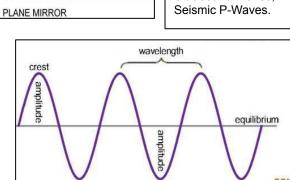
Speed =

Distance Time

Substance 1 Boundary Substance 2 Angle of refraction Refracted ray $v = f\lambda$ v = velocitv

Angle of


f = frequency


 λ = wavelength

Light can travel through a vacuum but sound cannot. Sound needs a medium to travel through either a solid, liquid or gas. Sound travels fastest in a solid because the particles are closer together.

Further Reading: https://www.bbc.com/bitesize/guides/zg7thyc/

https://www.bbc.com/bitesize/quides/z8d2mp3 /revision/1

Angle of

Incident Ray

Incidence

Transverse Waves In transverse waves, the vibrations are at right angles to the

direction of wave travel. Examples include: Ripples on water, vibrations on a guitar string and a Mexican Wave. Electromagnetic waves such as light waves, microwaves and radio waves.